Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 78: 117132, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36542960

ABSTRACT

Multitargeting ligands on enzymes and receptors may generate a profile for a potential treatment of cognitive impairment. Considering this, a set of 21 substituted aryl-alkyl-piperazines were designed, prepared and tested for their binding affinities at histamine H3 and dopamine D3 receptors (H3R and D3R, respectively) as well as acetyl- and butyrylcholinesterases (AChE/BChE) as potentially synergistic profile. Initial screening of the compounds at H3R and D3R was done at 1 or 10 µM and 100 µM at AChE and BChE assays. The most promising compounds were then evaluated in full concentration-response curves to estimate the Ki and IC50 values. Results showed that several compounds were ligands at H3R (n = 10), D3R (n = 6), AChE (n = 3), and BChE (n = 9). Compounds LINS05006 (Ki H3R 2.8 µM; D3R 0.7 µM; IC50 BChE 26.3 µM) and LINS05015 (Ki H3R 1.1 µM; D3R 3.1 µM; IC50 AChE 97.8 µM; BChE 43.7 µM) are highlighted since presented affinity in three different. These results suggest that methylpiperazine moiety led to balanced activity at all three classes of targets, and longer linker provided the best affinities. These compounds presented high ligand efficiency values (LE > 0.3) and may have adequate pharmacokinetic profile as suggested by calculated physicochemical properties.


Subject(s)
Cognitive Dysfunction , Receptors, Histamine H3 , Humans , Histamine , Dopamine , Ligands , Butyrylcholinesterase/metabolism , Receptors, Histamine H3/metabolism , Cognitive Dysfunction/drug therapy , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
2.
Chem Biol Drug Des ; 100(5): 722-729, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36050829

ABSTRACT

Histamine is involved in several central nervous system processes including cognition. In the last years, H3 receptor (H3 R) antagonists have been widely explored for their potential on dementias and other cognitive dysfunctions, and the cooperative role between histamine and acetylcholine neurotransmissions on cognitive processes is widely known in literature. This motivated us to assess the potential of 1-[(2,3-dihydrobenzofuran-1-yl)methyl]piperazines (LINS01 compounds) as inhibitors of cholinesterases, and thus this work presents the inhibitory effect of such compounds against acetyl (AChE) and butyrylcholinesterase. A set of 16 selected compounds were evaluated, being compounds 2d and 2e the most potent inhibitors of both cholinesterases (IC50 13.2-33.9 µM) by competitive mechanism, as indicated by the kinetic assays. Molecular docking simulations suggested that the allylpiperazine and dihydrobenzofuran motifs present in these compounds are important to perform π-interactions with key tryptophan residues from the enzymes, increasing their affinity for both H3 R and cholinesterases. Metric analysis support that compound 2d (LINS01022) should be highlighted due to its balanced lipophilicity (ClogP 2.35) and efficiency (LE 0.32) as AChE inhibitor. The results add important information to future design of dual H3 R-cholinesterases ligands.


Subject(s)
Alzheimer Disease , Receptors, Histamine H3 , Acetylcholine , Acetylcholinesterase/metabolism , Benzofurans/chemistry , Benzofurans/pharmacology , Butyrylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Histamine , Histamine Antagonists/pharmacology , Humans , Ligands , Molecular Docking Simulation , Piperazines/chemistry , Piperazines/pharmacology , Receptors, Histamine H3/chemistry , Structure-Activity Relationship , Tryptophan
3.
Chem Biol Drug Des ; 98(2): 212-225, 2021 08.
Article in English | MEDLINE | ID: mdl-33991182

ABSTRACT

The role of histamine and acetylcholine in cognitive functions suggests that compounds able to increase both histaminergic and cholinergic neurotransmissions in the brain should be considered as promising therapeutic options. For this purpose, dual inhibitors of histamine H3 receptors (H3 R) and cholinesterases (ChEs) have been designed and assessed. In this context, this paper reviews the strategies used to obtain dual H3 R/ChEs ligands using multitarget design approaches. Hybrid compounds designed by linking tacrine or flavonoid motifs to H3 R antagonists were obtained with high affinity for both targets, and compounds designed by merging the H3 R antagonist pharmacophore with known anticholinesterase molecules were also reported. These reports strongly suggest that key modifications in the lipophilic region (including a second basic group) seem to be a strategy to reach novel compounds, allied with longer linker groups to a basic region. Some compounds have already demonstrated efficacy in memory models, although the pharmacokinetic and toxicity profile should be considered when designing further compounds. In conclusion, the key features to be considered when designing novel H3 R/ChEs inhibitors with improved pharmacological profile were herein summarized.


Subject(s)
Cholinesterases/chemistry , Ligands , Receptors, Histamine H3/chemistry , Binding Sites , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Cholinesterase Inhibitors/therapeutic use , Cholinesterases/metabolism , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/pathology , Drug Design , Histamine Antagonists/chemistry , Histamine Antagonists/metabolism , Histamine Antagonists/therapeutic use , Humans , Molecular Docking Simulation , Receptors, Histamine H3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...